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Abstract

We develop a geometric theory of incentives that unifies games, nudges, language, market struc-
ture, and collective cascades within a single framework. Canonical strategic environments—such as the
Prisoner’s Dilemma, Stag Hunt, Chicken, and Harmony—are shown to correspond to open regions in
payoff space, separated by low-codimension indifference boundaries across which equilibrium structure
changes discontinuously. We formalize nudging as payoff engineering: minimal deterministic or stochas-
tic perturbations designed to move a system across these boundaries. This perspective accommodates
benevolent nudging, adversarial manipulation, linguistic reframing, and institutional design as instances
of the same underlying operation. Extending the analysis to N-player settings, we show how threshold
effects and strategic complementarities give rise to phase transitions and, dynamically, to self-organized
criticality near coordination boundaries. Risk, noise, and variance are shown to matter only insofar as
they deform incentive geometry, clarifying when stochastic interventions can and cannot alter strategic
type. The framework yields concrete design principles for robustness and defensive engineering, em-
phasizing distance from critical boundaries, control of incentive gradients, and resistance to adversarial
nudging. Incentive geometry thus provides a unifying lens for understanding robustness, escalation, and
coordination across economic, institutional, and social systems.

1 Introduction

Strategic behavior often changes abruptly. Markets that appear stable suddenly collapse; cooperative norms
persist for years and then unravel; institutions designed for efficiency generate unexpected brinkmanship;
small linguistic shifts precipitate large collective responses. These phenomena are typically studied in iso-
lation—through game theory, behavioral economics, market microstructure, or complex systems—yet they
share a common structural feature: they occur when incentives are near a critical threshold.

This paper proposes a unifying explanation. We argue that strategic environments possess an underlying
incentive geometry. Games, institutions, and narratives occupy regions of a payoff space whose topology
determines equilibrium structure. Canonical games such as the Prisoner’s Dilemma (PD), Stag Hunt (SH),
Chicken, and Harmony are not merely stylized examples but archetypal regions in this space. They are
separated by indifference surfaces—simple equalities of payoffs—across which best responses and equilibrium
multiplicity change discontinuously.

Once this geometry is made explicit, a wide range of phenomena can be understood as controlled or
uncontrolled movements through payoff space. Behavioral nudges, stochastic incentives, linguistic framing,
market rules, and institutional reforms all act by perturbing payoffs—sometimes minimally, sometimes per-
sistently. Their effectiveness stems not from the magnitude of the intervention, but from its direction relative
to nearby strategic boundaries.

1.1 From Nudging to Payoff Engineering

The concept of nudging is usually framed in psychological or behavioral terms: small changes in choice
architecture influence decisions without coercion. We formalize nudging instead as a problem in incentive
design. A nudge is a minimal perturbation of the payoff structure—deterministic or stochastic—that alters
incentives sufficiently to change the strategic regime. We call this payoff engineering.
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This reframing has several advantages. First, it places nudging on the same footing as taxes, subsidies,
enforcement probabilities, and contractual guarantees. Second, it makes clear that nudging is inherently
dual-use: the same techniques can stabilize cooperation or undermine it. Third, it allows minimality to be
formalized using metrics and topology on payoff space, transforming nudging into a geometric boundary-
crossing problem.

1.2 Beyond Two Players: Thresholds and Cascades

While the intuition is clearest in 2 x 2 games, most real systems involve many agents. Extending the
analysis to N-player settings reveals a deeper structure. Incentives can often be summarized by a cooper-
ation—defection gap that depends on how many others cooperate. When this gap changes sign, threshold
effects emerge: cooperation becomes optimal only once enough others cooperate. These thresholds generate
multiple equilibria and make systems sensitive to small shocks.

Dynamically, such environments exhibit features of self-organized criticality. Slow drift in incentives—due
to technological change, risk, norms, or institutional evolution—can move a system toward a coordination
boundary. Near this boundary, local deviations propagate, producing cascades of all sizes. The familiar
PD-Stag Hunt boundary thus plays the role of a critical manifold in strategic systems.

1.3 Noise, Risk, and Strategic Type

A recurring question is whether randomness alone can transform strategic structure. We show that, under
risk neutrality, additive noise does not change strategic type: a Prisoner’s Dilemma remains a Prisoner’s
Dilemma regardless of variance. Noise matters only when combined with risk preferences and action- or
state-dependent variance, which deform effective payoffs through certainty equivalents. This clarifies when
stochastic nudges can induce genuine phase transitions and when they cannot.

1.4 Markets, Language, and Institutions

Payoff engineering need not be explicit. Language reshapes perceived payoffs, altering temptation and
fear without changing formal rules. Market microstructure and institutional design hard-code incentives
persistently, often unintentionally moving systems toward escalation or fragility. These mechanisms differ in
speed and reversibility, but they act on the same geometric substrate.

1.5 Design, Defense, and Ethics

Making incentive geometry explicit has normative consequences. Systems designed close to strategic bound-
aries are efficient but fragile; systems designed with large safety margins are robust but potentially conser-
vative. Because payoff engineering can be used adversarially—through framing, noise, or structural asym-
metry—defensive design requires increasing distance from critical boundaries, flattening dangerous incentive
gradients, and monitoring early warning signals of criticality.

The remainder of the paper develops this framework systematically. Section 2 reviews canonical games
and their payoff representations. Section 3 characterizes game classes geometrically. Sections 4-6 formalize
payoff engineering, minimality, and adversarial nudging. Sections 7-9 extend the framework to language,
markets, and institutions. Sections 10-12 analyze N-player extensions, noise, and self-organized criticality.
Section 13 derives design implications, and Section 14 concludes. Together, these sections argue that incen-
tives are not merely parameters but coordinates in a structured space—and that understanding this space
is essential for explaining escalation, cooperation, and collapse in complex strategic systems.

2 Foundations of Game Theory
Game theory studies strategic interactions among rational agents whose outcomes depend jointly on their

actions. The central object of analysis is a game, defined by its players, available strategies, and payoff
structure.



2.1 Normal-Form Games and Payoff Matrices

A normal-form (or strategic-form) game is a triple
G = (N, (Si)ien, (wi)ien),
where:
e N ={1,...,n} is the set of players,
e S; is the finite set of pure strategies available to player i,
o u;: 5 x--- x5, = Ris the payoff function for player 3.

For a two-player game (N = {1,2}), the payoff structure is conveniently represented as a payoff matriz.
Each cell contains an ordered pair (uy,us) corresponding to the payoffs of players 1 and 2 for a given strategy
profile.

2.2 Optimal Strategies and Best Responses

Given a strategy s_; played by all players other than i, player i’s best response is any strategy s; € S; such
that
wi(sf,5—;) > ui(s;, s—i) Vs; € S;.

A strategy is strictly dominant if it yields a higher payoff than any other strategy regardless of the
opponents’ actions. A strategy is weakly dominant if it is never worse and sometimes better.

2.3 Mixed Strategies

A mized strategy for player ¢ is a probability distribution o; € A(S;) over pure strategies. Expected payoffs
are computed linearly:

]E[Ui(O'l,O'g)] = Z Z 0'1(31)0’2(82)’(1@(81,82).

51 €851 82E€852

Mixed strategies allow equilibrium existence in games where no pure-strategy equilibrium exists.

2.4 Nash Equilibrium

A Nash equilibrium is a strategy profile (o7, ...,0%) such that no player can improve their expected payoff
by unilateral deviation:
Elu;(c},0",)] = Elui(os,07%;)] Vi, Yo, € A(S;).

Every finite game admits at least one Nash equilibrium in mixed strategies.

2.5 Worked Example: The Prisoner’s Dilemma

The classic Prisoner’s Dilemma involves two players, each choosing between Cooperate (C) and Defect
(D). A canonical payoff matrix is:

| ¢ D
C (3,
D] (5

3
0)
Key properties:

e Defection strictly dominates cooperation for both players.
e The unique Nash equilibrium is (D, D).

e The equilibrium is Pareto-inferior to (C,C).

The Prisoner’s Dilemma illustrates the tension between individual rationality and collective welfare.



3 The Stag Hunt and Strategic Coordination

3.1 Definition of the Stag Hunt

The Stag Hunt models a coordination problem where players must choose between a high-reward cooperative
action (Stag) and a lower but safer individual action (Hare). A typical payoff matrix is:

‘Stag Hare
Stag [ (14) (0,3)
Hare | (3,0) (3,3)

3.2 Equilibria and Risk Dominance
The Stag Hunt has two pure-strategy Nash equilibria:
e (Stag, Stag) — payoff-dominant but risky,
e (Hare, Hare) — risk-dominant but suboptimal.

Which equilibrium is selected depends on expectations, trust, and coordination mechanisms.

3.3 Comparison with the Prisoner’s Dilemma

Prisoner’s Dilemma Stag Hunt
Number of Nash equilibria One Two
Dominant strategies Yes (Defect) No
Coordination problem No Yes
Socially optimal equilibrium Not stable Stable but risky

In contrast to the Prisoner’s Dilemma, the Stag Hunt does not pit individual rationality against collective
welfare; instead, it highlights equilibrium selection under uncertainty. The central challenge is not temptation
to defect, but fear of miscoordination.

Both games are foundational in economics, political science, and evolutionary theory, capturing distinct
structural failures of cooperation.

4 The Game of Chicken

The Game of Chicken is a canonical two-player, non-cooperative game that models conflict situations in
which players face a choice between aggression and concession. The central tension arises from the desire to
avoid the worst possible outcome (mutual catastrophe) while not yielding unilaterally to the opponent.

4.1 Definition and Payoff Matrix
Each player chooses between two actions:

e Straight (S): persist or escalate,

e Swerve (W): yield or de-escalate.

A standard payoff matrix is given by:

The numerical values are illustrative but reflect the typical ranking:

Win by opponent swerving > Mutual swerving > Unilateral swerving > Mutual straight.



4.2 Strategic Structure

The game has the following features:
e No dominant strategies for either player.
e A strongly Pareto-dominated outcome at (S, .5).
e Incentives to commit credibly to aggression in order to force the opponent to yield.
Unlike the Prisoner’s Dilemma, cooperation (mutual swerving) is not undermined by a dominant strategy,
but is unstable due to unilateral incentives to persist.
4.3 Nash Equilibria
The Game of Chicken admits:
e Two pure-strategy Nash equilibria: (S,W) and (W, 5).
¢ One mixed-strategy Nash equilibrium.

In the mixed equilibrium, each player randomizes between S and W such that the opponent is indifferent.
Let p denote the probability that a player chooses S. Indifference implies:

which yields
_ u(W, W) —u(S, W)
P u(8.8) —ulS,W) — u(W, 8) + u(W, W)’
This equilibrium captures strategic uncertainty and brinkmanship but is inefficient due to the positive
probability of mutual disaster.

4.4 Commitment and Credibility

A defining feature of Chicken is the value of credible commitment. If one player can commit to playing S—for
example, by making their steering wheel visibly immovable—the opponent’s best response is to swerve. This
transforms the strategic structure by eliminating equilibria unfavorable to the committing player.

Such commitment devices shift the game from symmetric conflict to asymmetric dominance, highlighting
the strategic role of irreversibility and signaling.

4.5 Comparison with Related Games

The Game of Chicken occupies a conceptual position between the Prisoner’s Dilemma and the Stag Hunt:
e Unlike the Prisoner’s Dilemma, mutual cooperation is not undermined by dominance.
e Unlike the Stag Hunt, mutual cooperation is not risk-dominant.
e Unlike both, Chicken features strategic intimidation as a rational equilibrium-selection mechanism.

The game is widely applied in analyses of military brinkmanship, financial crises, labor disputes, and
political standoffs, where the primary risk arises not from defection, but from mutual escalation.



5 Inequalities and Geometry: Distinguishing PD, Stag Hunt, and
Chicken

Consider a symmetric 2 x 2 game with action set {C, D} for each player. Write the row player’s payoff
matrix as

¢ D
C|R S
D|T P

and assume the column player’s payoffs are symmetric (i.e. the same matrix with actions interchanged). The
four canonical payoffs are:

reward): payoff from mutual cooperation (C,C),

temptation): payoff from unilateral defection (D, C),

e R(
e P (punishment): payoff from mutual defection (D, D),
o T (
e S (sucker): payoff from unilateral cooperation (C, D).

Up to positive affine transformations of payoffs (which preserve best responses and Nash equilibria),
the ordinal structure of the game is determined by strict inequalities among (T, R, P, S). The three games
considered correspond to three distinct regions (cones) in the (T, R, P, S)-space.

5.1 The Three Inequality Patterns

Prisoner’s Dilemma (PD). Defection is strictly dominant for both players, and (D, D) is the unique
Nash equilibrium while (C, C) is Pareto-superior. The defining inequalities are:

T>R>P>S, (1)
often supplemented by the “no alternation” condition
2R>T+ S, (2)

which rules out cases where alternating unilateral defection/cooperation dominates mutual cooperation.

Stag Hunt (SH). Thisis a coordination game with two pure Nash equilibria, one payoff-dominant (mutual
cooperation) and one risk-dominant (mutual defection). The defining inequalities are:

R>T>P>S8, (3)

with the strict form R > T > P > S being the cleanest archetype.

Chicken (CH). This is an anti-coordination (hawk—dove) game with two asymmetric pure Nash equilibria
and typically one mixed equilibrium. The defining inequalities are:

T>R>S>P. (4)

Here the worst outcome is mutual defection (D, D), while unilateral defection against cooperation is most
attractive.



5.2 Geometric Separation in Payoff Space

The inequalities (1)—(4) carve the payoff space into polyhedral regions separated by hyperplanes of indiffer-
ence. Concretely, each strict inequality corresponds to a half-space bounded by a hyperplane such as

T=R, R=P, P=S  R=S  T=P etc
For example:
e The boundary between PD and SH includes the hyperplane T' = R:
PD requires T' > R, SH requires R > T.

Crossing T' = R flips the best response to C' when the opponent plays C, changing dominance into
coordination.

e The boundary between PD and CH includes the hyperplane S = P:
PD requires P > S, CH requires S > P.

Crossing S = P changes which outcome is worst (sucker payoff vs. mutual defection), and converts a
dominant-strategy dilemma into an anti-coordination conflict.

e The boundary between SH and CH includes the hyperplane T' = P (or equivalently the reversal of T
and P in the relevant ordering):

SH typically has 7' > P, CH has S > P and T high, but the strategic structure differs by R =2 T.

Thus, each game corresponds to a cell in an arrangement of hyperplanes in R* (or in a lower-dimensional
quotient after normalizations). These cells are open convex polyhedra: within each cell, the best-response
correspondences and Nash equilibrium structure are invariant.

5.3 A Useful 2D Normalization (Geometry in the (z,y)-Plane)

Because positive affine transformations preserve strategic structure, one can normalize payoffs by fixing
R =1and P =0 (assuming R # P), leaving two free parameters:

z:=T—R, y=5S—-P = T=1+z S=uy.
In the (z,y)-plane:

e Prisoner’s Dilemma corresponds to
>0, y<O0,

together with R > P (already enforced by normalization).

e Stag Hunt corresponds to
r<0, y<0,

i.e. both deviation incentives against cooperation and against defection are negative, yielding two
coordination equilibria.

e Chicken corresponds to
x>0, y>0,

i.e. there is temptation to defect against a cooperator (x > 0) but also an incentive to cooperate against
a defector (y > 0), producing anti-coordination.

Geometrically, these three archetypes occupy three quadrants separated by the axes
r=0 < T =R, y=0 < S=P,

which are precisely indifference boundaries where best responses change. The remaining quadrant (z <
0,y > 0) corresponds to the Harmony class (mutual cooperation is uniquely stable).



5.4 Interpretation via Best-Response Slopes

The signs of t =T — R and y = S — P encode the “direction” of incentives:
e z > 0 means a unilateral move from C to D is profitable when facing C' (temptation).

e y > 0 means a unilateral move from D to C' is profitable when facing D (fear of mutual defection /
desire to avoid catastrophe).

Therefore:
‘ y <0 y>0
x > 0 | Prisoner’s Dilemma  Chicken
<0 Stag Hunt Harmony

This quadrant picture is the simplest geometric separation of the three payoff matrix structures: each game
corresponds to an open region in parameter space in which equilibrium type and qualitative strategic tension
are invariant.

6 Nudging as Payoff Engineering

6.1 From Behavioral Nudging to Strategic Design
The theory of nudging originates in behavioral economics, where it refers to subtle interventions in a choice
architecture that alter behavior without restricting options or materially changing incentives. In a strategic
setting, however, nudging admits a precise formalization: it can be understood as a controlled perturbation
of the payoff structure of a game, sufficient to alter incentives and equilibrium selection while remaining
minimal in magnitude.

We adopt this formal, game-theoretic perspective and refer to it as payoff engineering.
6.2 Definition: Payoff Engineering
Let G = (N, (S;), (u;)) be a normal-form game. A payoff engineering intervention is a transformation
where the perturbation Awu; satisfies:

1. Minimality: ||Aw;|| is small relative to the original payoff scale (e.g. bounded in ¢, norm).

2. Non-coercion: The strategy sets S; are unchanged.

3. Locality: Only selected payoff entries are modified.

The objective is not to optimize payoffs directly, but to change the incentive geometry—that is, to move

the game from one strategic region of payoff space to another (as characterized in the previous section).

6.3 Nudging as a Transition Between Game Classes

Recall that symmetric 2 x 2 games are classified by the signs of
x:=T—R, y:=5—P,

which determine the quadrant of payoff space and thus the game type.
A nudge corresponds to a small change (dz, dy) such that:

(z,y) — (x4 dx,y+ dy),

crossing a boundary of indifference:
T=R or S=P



Example Transitions.

e Prisoner’s Dilemma — Stag Hunt: reduce temptation (dz < 0) so that T < R, converting
dominance into coordination.

e Prisoner’s Dilemma — Chicken: increase the sucker payoff (dy > 0), making mutual defection the
worst outcome.

e Chicken — Harmony: further reduce temptation or increase coordination rewards, eliminating
conflict equilibria.

These transitions require only crossing hyperplanes of measure zero in payoff space, emphasizing that

small interventions can have large structural effects.

6.4 Deterministic Payoff Engineering
In deterministic payoff engineering, Awu; is fixed and known. Typical mechanisms include:
e bonuses or penalties (taxes, subsidies),
e contractual guarantees,
e default rewards or insurance mechanisms.
Formally, these act by shifting specific payoff entries (e.g. increasing R or decreasing T'), thereby modifying

best-response correspondences.

6.5 Stochastic Payoff Engineering

More subtly, nudging can be stochastic. Let payoffs depend on an exogenous random variable &:
i(s1, s2) = Eelu;(s1, 52;€)].

Examples include:

e probabilistic enforcement or auditing,

e random matching or reputation effects,

e uncertainty about sanctions or rewards.

Even when expected payoff changes are small, stochasticity can alter risk dominance and equilibrium
selection, particularly in coordination games.

6.6 Geometry of Nudging

Geometrically, payoff engineering corresponds to moving the payoff vector within R* (modulo affine trans-
formations). Nudges are short vectors that cross strategic boundaries:

ac = {T = RyU{S = P},

where C denotes a game-class cell (PD, SH, CH, etc.).
Thus, nudging is not about large payoff changes, but about directional movement across these boundaries.
The effectiveness of a nudge depends on:

e proximity to a boundary,
e curvature of expected-payoff indifference surfaces (under stochastic nudges),

e cquilibrium selection criteria (risk dominance, trembling-hand perfection).



6.7 Interpretation

Viewed through payoff engineering, nudging is revealed as a form of mechanism design under minimal
intervention. Rather than redesigning institutions or imposing constraints, the designer reshapes incentives
just enough to reclassify the strategic situation itself.

In this sense, nudging is neither psychological manipulation nor moral exhortation; it is a precise inter-
vention in the geometry of incentives, exploiting the fact that strategic equilibria are often separated by
fragile boundaries in payoff space.

7 Adversarial Nudging

7.1 Definition and Motivation

While payoff engineering can be used to improve coordination and welfare, the same mechanisms admit a

dual use. We define adversarial nudging as the deliberate application of payoff engineering to degrade the

strategic structure of a game—shifting it toward conflict, inefficiency, instability, or catastrophic equilibria.
Formally, adversarial nudging consists of perturbations

u; U = uy + Auy,
where Auwu; is designed not to align incentives, but to:
e introduce dominant defection,
e destroy coordination equilibria,
e increase equilibrium multiplicity and uncertainty,
e or amplify worst-case outcomes.

Crucially, as with benevolent nudging, these perturbations are often small, local, and plausibly deniable.

7.2 Adversarial Transitions Between Game Classes

Using the normalized parameters
x:=T—R, y:=85—P,

adversarial nudging corresponds to directed movements in payoff space that cross strategic boundaries in
the wrong direction.
Canonical Adversarial Transitions.

e Stag Hunt — Prisoner’s Dilemma: increase temptation (éx > 0) or reduce the reward for mutual
cooperation, eliminating the cooperative equilibrium.

e Stag Hunt — Chicken: increase fear of miscoordination (dy > 0), transforming coordination into
brinkmanship.

e Harmony — Stag Hunt or PD: introduce artificial risk or asymmetry, creating strategic tension
where none existed.

e Chicken — PD: further reduce the sucker payoff so that defection becomes strictly dominant.

These transitions increase the likelihood of inefficient or destructive outcomes while preserving the ap-
pearance of free choice.

10



7.3 Mechanisms of Adversarial Nudging

Adversarial payoff engineering may be implemented through:
e Selective penalties: lowering S or P via asymmetric sanctions.
e Artificial uncertainty: stochastic fines, audits, or enforcement that increase perceived downside risk.
e Information distortion: framing or disclosure rules that effectively rescale perceived payoffs.

e Temporal manipulation: delaying rewards for cooperation while making defection immediately
salient.

These interventions often operate on expectations rather than realized payoffs, exploiting bounded ratio-
nality while remaining strategically effective even for fully rational agents.

7.4 Geometric Interpretation

Geometrically, adversarial nudging corresponds to pushing the payoff vector away from coordination-friendly
regions and toward instability boundaries:

(x,y) = (x+dz,y+ dy),
with (dz,dy) chosen to maximize:
e dominance of defection (z > 0,y < 0),
e equilibrium asymmetry (x > 0,y > 0),
e or equilibrium fragility (near x = 0 or y = 0).

Particularly effective adversarial nudges keep the game close to a boundary, where small shocks or noise
lead to large behavioral shifts.

7.5 Strategic Adversarial Nudging

In repeated or institutional settings, adversarial nudging can be cumulative. Repeated small perturbations
can:

e crode trust in coordination games,
e normalize defection as a rational response,
e lock populations into inferior equilibria,
e or create path dependence favoring the adversary.
This makes adversarial nudging a powerful tool in competitive environments such as regulatory design,
labor relations, platform governance, and geopolitical strategy.
7.6 Detection and Robustness
From a defensive perspective, adversarial nudging can be detected by monitoring:
e systematic drift in (T — R) or (S — P) over time,
e increased variance or skewness in payoff realizations,
e divergence between nominal rules and effective incentives.
Robust game design seeks to maximize the distance from critical hyperplanes:
T=R and S=P,

making strategic structure resistant to small adversarial perturbations.

11



7.7 Interpretation

Adversarial nudging reveals a fundamental asymmetry: while cooperation often requires careful engineering,
undermining it can be achieved with minimal effort. The same fragility that makes nudging attractive for
policy also makes strategic systems vulnerable to manipulation.

In payoff-geometric terms, adversarial nudging is the art of pushing a game just far enough to change its
nature—without ever appearing to have done so.

8 Minimality as a Metric/Topological Design Principle

8.1 Payoff Space and Strategic Equivalence
Fix a finite normal-form game
G= <Na (Si)iENa (ui)i€N>, u; » S — R, S = H S,
€N

with |S| < oo. Identify each u; with a vector in RISl by ordering the strategy profiles, and write the payoff
tensor as
u = (uj)ieN € RNISI

Two payoff tensors can be strategically equivalent under transformations that preserve best responses.
The most commonly used equivalence is positive affine rescaling per player:

!

u~u = F(a; >0,b; € R)jen s.t. u; = au; + b1, (5)

where 1 € R/l denotes the all-ones vector. Under (5), expected-utility maximization, best responses, and
Nash equilibria are preserved.
We thus view strategic environments as elements of the quotient space

U:= RMS‘/N,

and nudging/payoff engineering as the problem of moving within (or between) regions of ¢/ at minimal “cost.”

8.2 Metrics for Deterministic Payoff Engineering
A payoff engineering intervention is a perturbation Au € RNISI| producing @& = u 4+ Au. To formalize

minimality we introduce a cost functional induced by a metric on payoff space.

Entrywise (sup) metric. Define

doo (u, @) := %%(r;lgg(‘uz(s) - uz(s)|

This expresses a strict “no large local changes” philosophy: the cost is the maximum absolute modification
to any payoff entry.

Weighted ¢, metrics. Let w = (w; s) be nonnegative weights (e.g. reflecting which entries are practically
manipulable). Define

1/p
Uz‘(s)—ﬂz‘(sﬂp) , 1<p<oo.

dpw(u, @) == <Zzwi,s

i€N s€S

This supports sparse vs. diffuse interventions through the choice of p and w.

12



Quotient (gauge-fixed) metrics. Because we care about U rather than raw payoffs, define a metric on
equivalence classes by minimizing over affine representatives:

du([ul, [v]) := a;gllfeRH u— (a;v; + bil)ien ||, (6)
where || - || is any norm on RNIS! (e.g. £, or £3). Operationally, (6) measures the smallest strategically

meaningful change required to move from [u] to [v].

Nudge design as a minimal-distance boundary crossing problem. Let C C U be a class of games
(e.g. Prisoner’s Dilemma) and C’ C U another class (e.g. Stag Hunt). Then a minimal nudge that transitions
[u] € C into C’ is:

min |Au| st [u+ Au] €.
Equivalently, it is the distance from [u] to the target region:

dist([u],C’) == inf dy([u], [v]).

[v]ec’

8.3 Topology and Stratified Geometry of Incentive Structures

Game “types” are separated by indifference conditions—equalities of payoffs between two actions under a
fixed opponent action profile. For player i, two pure actions s;, s, € S; are indifferent against s_; € S_;
when

wi(8i,8-3) = ui(sh, 5_4).

RNlSl

Each such equality defines an affine hyperplane in The complement of the union of all such hyperplanes

is an arrangement of open polyhedral cells:

RNVISI \ U (indifference hyperplanes) = I_I Qs
k

where each cell Qj, corresponds to a constant best-response pattern. In particular:
e Within a cell, the best-response correspondence is invariant.
e Crossing a boundary hyperplane changes at least one best response (a “phase transition” in incentives).

Passing to the quotient I/ inherits a stratified geometry: game space decomposes into regions (cells) of
constant strategic form, glued along lower-dimensional boundaries where indifferences occur. Nudging is
therefore naturally viewed as:

moving a point in a stratified space to cross into a different stratum at minimal metric cost.

8.4 Specialization: Symmetric 2 x 2 Games

For symmetric 2 X 2 games with canonical payoffs (T, R, P, S), one may normalize (when R # P) by setting
R=1, P=0, z:=T—-R, y:=S—P,

so each strategic environment corresponds to a point (z,y) € R?. The indifference boundaries are the axes
r=0 <« T=R, y=0 < S=P,

which partition the plane into quadrants (PD, Stag Hunt, Chicken, Harmony). Under the ¢, metric on
(x,y),

dos ((z,y), (2", y)) = max{|z — 2’|, [y — '},
the minimal nudge to change type is simply the distance to the nearest relevant axis. For instance, starting
in Prisoner’s Dilemma (z > 0,y < 0):

distes ((z,y), {o < 0}) =2 (PD — Stag Hunt by reducing temptation),
distoo ((2,9),{y > 0}) = —y (PD — Chicken by raising sucker payoff).

Thus proximity to strategic fragility is literal Euclidean/metric proximity to a boundary.

13



8.5 Stochastic Payoff Engineering: Metrics on Distributions

In stochastic payoff engineering, payoffs depend on a random variable &:
Ui (s;€) € R, with induced distribution E(ﬁ)

There are (at least) two natural notions of minimality:

Expected-payoff minimality. Define the expected payoff tensor @ := E[u] and measure cost by d(, u).
This captures “small changes on average”.

Distributional minimality. Treat @ as a random vector in RV!S| and define a metric on laws, e.g. the
p-Wasserstein distance
Wi (L(w), L(u))

where £(u) is degenerate at u. This captures the idea that a nudge may keep expected payoffs nearly fixed
while increasing variance or tail risk, thereby changing equilibrium selection (e.g. risk dominance) without
large mean shifts.

8.6 Robustness Radius and Adversarial Budgets

Given a class C C U, define the robustness radius of [u] € C as
p([u]; C) == dist([u],U \ C),

the smallest payoff-engineering budget (in the chosen metric) required to change the game type. This is the
natural dual to minimal nudging and provides a precise language for adversarial nudging:

e A defender wants p large (hard to undermine).

e An adversary seeks perturbations of size < e with € > p to force a transition.

8.7 Design Principle

Minimality is thus formalized as metric-optimal boundary crossing in a stratified payoff space (or its quotient
by strategic equivalence). The geometry explains why nudges can be both powerful and fragile: many
qualitatively different incentive regimes are separated by low-codimension indifference surfaces, so a short
vector in a well-chosen direction can induce a discontinuous change in best-response structure.

9 Geometric Payoff Engineering: Finsler/Riemannian Costs and
Closed-Form Minimal Nudges

This section makes the “minimality” principle operational by (i) endowing payoff space (modulo strategic
equivalence) with a local cost geometry (Finsler/Riemannian), and (ii) computing minimal payoff-engineering
interventions as metric projections onto target game-class regions (e.g. PD/SH/CH), which are polyhedral
cones (cells) defined by linear inequalities.

9.1 Local Cost Geometry: Finsler and Riemannian Structures

Let u € RVIS! be the payoff tensor and Au a perturbation. A Finsler cost assigns a norm that may depend
on the base point:
|Aull, : RN 5 Ryg,  with [[Aully = M| Al

This captures that some payoff entries may be easier /harder to change depending on institutional context,
salience, or implementability.
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A widely useful special case is a Riemannian (quadratic) cost, specified by a symmetric positive definite
matrix G(u):
|Au||? := (Au, Au), := Au' G(u) Au. (7)

If G(u) is constant, this reduces to a fixed ellipsoidal norm; if G(u) varies with u, we obtain a genuine
Riemannian metric on payoff space, and minimal nudges become geodesic projections (locally Euclidean to
first order).

Interpretation of G(u). Diagonal entries of G(u) encode marginal costs of changing specific payoff cells;
off-diagonal terms encode coupled interventions (e.g. when one policy change shifts multiple payoffs simul-
taneously).

9.2 Quotient Geometry: Removing Affine Degrees of Freedom

Recall the positive affine equivalence per player:
U; »—>aiui+bil, a; >0, b; € R.

To measure strategically meaningful perturbations, we pass to a quotient or fix a gauge.
A convenient gauge is to impose linear constraints eliminating the trivial directions:

(us,1) =0 (translation removed), |lui]] =1 (scale fixed),

or (in the 2 x 2 symmetric setting) use the canonical normalization R = 1, P = 0 (when R # P). In
what follows we work in the normalized (x, y)-plane because it yields clean closed forms and directly reflects
incentive geometry.

9.3 Normalized 2 x 2 Geometry and Polyhedral Game Regions

For symmetric 2 x 2 games with canonical payoffs (T, R, P, S), normalize (assuming R # P):
R=1, P=0, 2:=T-R, y:=5-P, so T=1+z, S=uy.
The game class is determined by the signs of x and y:
PD:z >0,y <O0; SH:z <0,y <0; CH:x>0,y>0.
The indifference boundaries are the axes:
r=0 <= T =R, y=0 <<= S=P

Thus each class is an open convex cone (quadrant) in R2.
A payoff-engineering nudge becomes a vector § = (dx, dy), moving (z,y) to (z',y') = (z,y) + 9.

9.4 Minimal Nudges as Metric Projections onto Half-Spaces

Let the cost be induced by a norm || - || on R? (possibly state-dependent; here take it fixed for closed-form
projections). Given a target region C (e.g. SH), the minimal nudge is the solution of the convex program

in |6 st. (z,y)+€C, 8

mig [|§] st (z,y) (8)

L.e. the projection of (x,y) onto the closed region C in the chosen geometry.
Because C is an intersection of half-spaces (e.g. SH is {z < 0, y < 0}), the projection has a simple form.
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9.4.1 Closed forms under ¢; (Euclidean) cost

With ||6]|2 = v/dx2 + dy?, projection onto a quadrant is coordinate-wise clipping:
HSH (177 y) = (min{xa O}a min{y, 0})7

Men(z, y) = (max{z,0}, max{y,0}),
Ipp(z,y) = (max{z,0}, min{y,0}).

Hence the minimal nudge 6* = Il¢(z,y) — (z,y) is:

5:0 SH — (min{x, 0} -, mln{y70} - y) = (—ZZ?+, _y+)7
:o CH — (max{x, 0} - T, max{y,O} - y) = (—l‘_, _y—>7
6:0 PD — (max{x, 0} -, mln{y70} - y) = (—{,C,7 _er)u

where zy := max{z,0} and z_ := min{z, 0}.
The corresponding minimal costs are

6% sullz = /2% + 93, 105 culla = /22 + 92, 165, pplla = /22 + v}

9.4.2 Closed forms under weighted Euclidean (Riemannian) cost

Let G = diag(gs, gy) with g, g, > 0, so
18]1& = 9.:(52)* + g, (dy)*.

The projection remains coordinate-wise clipping (because G is diagonal and the feasible set is orthant-
separated):
Hg(aj7y) = HC('T’y)7

||§:o SHHG = gwmi + gyyi, etc.

This already yields a useful “engineering” interpretation: if changing = (temptation) is expensive (large g, ),
the cheapest route may be to target a class reachable mainly by shifting y (fear/sucker component), and
vice versa.

For a full (non-diagonal) Riemannian metric G > 0, the projection onto polyhedral cones is still a convex
quadratic program. In 2D one can solve it by checking the active-set candidates (interior, each boundary
ray, and the vertex); in practice this is constant-time.

but the minimal cost becomes

9.4.3 Closed forms under /., and /; costs

For the sup-norm ||0]|ec = max{|dx|,|dy|}, the minimal cost to hit a quadrant equals the maximal required
coordinate correction; e.g. for SH:

1050 snlloo = max{zy, yi}.
A corresponding minimal nudge can be chosen as §* = (—z4, —y4) (not unique under ¢, when one
coordinate dominates).

For ¢1 cost, 0|1 = |dz| + |dy|, the projection onto a quadrant again reduces to clipping with minimal
cost

||5:<o SH”1 = T4 + Yy,

and similarly for CH and PD.
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9.5 From Quadrants Back to Payoff Entries

In normalized 2 x 2 games, = T — R and y = S — P. Thus a nudge (dz,dy) can be implemented by
modifying any combination of (T, R) and (S, P) achieving:

dx =0T — R, dy =465 —0P.

This highlights the non-uniqueness of payoff engineering: the same incentive movement can be realized by
different institutional levers (e.g. increasing R vs. decreasing T both reduce z).

9.6 Minimal Nudges in the Unnormalized (T, R, P, S) Space

If one prefers to work in R* directly, each class can be expressed as linear inequalities, e.g.
PD: T-R>0,P—S>0, R—P >0 (plus order refinements),
SH: R—-T>0,P—-S>0, R—P >0,
CH: T-R>0,5S—P >0, R—S >0 (typical archetype).

A minimal nudge problem becomes a projection onto an intersection of half-spaces in R* under a chosen
norm (or quadratic form). Under a quadratic cost AT GA this is a standard convex QP; closed-form solutions
exist whenever only one constraint is active (distance to a single hyperplane), and otherwise can be obtained
by enumerating active sets (a constant-size check in 4D).

9.7 Engineering View: Distance-to-Boundary and Strategic Robustness

Define the robustness radius (in a chosen norm) to leaving a class C:

pe(@,y) = dist((z,y), R*\ C).

For example, in Prisoner’s Dilemma (2 > 0,y < 0), the distance to the nearest class boundary is

pgg)(x,y) = min{z, —y} under ¢5 or ¢y, (to the nearest axis),

and
p;OS) (x,y) = min{x, _y}v Pg[))(ffay) = Inin{xa _y},

noting that the axis distance governs the first boundary crossing under any orthant-separable norm. This
makes “how nudgable” (or “how undermineable”) a strategic environment is into a literal geometric quantity.

9.8 Practical Recipe
Given an empirical or modeled payoff environment:
1. Choose a strategic gauge (e.g. normalize to (x,y) or quotient by affine equivalence).

2. Choose a cost geometry (e.g. fo for maximum allowable local change, or G for implementability-
weighted costs).

3. Compute the metric projection (8) onto the desired class region.

4. Translate (dx,dy) back into implementable payoff levers via dz = 6T — 6 R and dy = 65 — 6P (or the
analogous linear map in the general finite game).

In this form, “nudging” becomes a concrete optimization problem in a stratified geometric space: find
the smallest intervention that crosses the mearest relevant indifference boundary in the direction of a desired
incentive regime.
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10 Linguistic Nudging: Reframing as Payoff Engineering

10.1 Motivation and Scope

Thus far, payoff engineering has been described in terms of explicit material changes to incentives (bonuses,
penalties, probabilities). In many real-world strategic environments, however, payoffs are not fully objective
or contractible. Instead, they are perceived, anticipated, and interpreted through language.

We therefore introduce linguistic nudging: the use of linguistic framing, labeling, narrative, or discourse
to induce effective changes in perceived payoffs, thereby transitioning the incentive structure from one game
type to another. Crucially, linguistic nudging does not alter the underlying strategy set or formal rules; it
operates by reshaping agents’ subjective payoff functions.

In payoff-engineering terms, language induces a perturbation

wu; — U = u; + Ahngui,

where Ali"8q; arises from changes in interpretation rather than material incentives.

10.2 Perceived Payoffs and Framing

Let u;(s) denote the objective payoff, and let m;(s | F) denote the perceived payoff under a linguistic frame
F. We write
mi(s | F) = wi(s) + ¢i(s; F),

where ¢; is a framing-induced distortion. Linguistic nudging corresponds to choosing F so that ¢; shifts the
effective payoff parameters (T, R, P, S).
Examples of framing effects include:

e salience amplification (making certain outcomes cognitively dominant),
e moral labeling (“fair”, “selfish”, “aggressive”),

e expectation shaping (“everyone is cooperating”),

e temporal reframing (short-term loss vs. long-term gain).

From the standpoint of equilibrium analysis, it is 7;, not u;, that governs best responses.

10.3 Linguistic Control of the (z,y) Parameters

Recall the normalized parameters
r:=T—-R, y:=5—-P

Linguistic reframing acts by modifying perceived temptation (z) and perceived fear (y):

T — x4+ 0z, y — Y+ oyne,

Reducing perceived temptation (628 < 0). Language that morally condemns unilateral defection,
emphasizes reputational cost, or frames cooperation as identity-consistent reduces the subjective advantage

of D against C.

Reducing perceived fear (6y'""8 < 0). Language that emphasizes reliability, shared fate, or guarantees
of reciprocity lowers the perceived downside of cooperating when the other defects.

Increasing perceived temptation or fear (Jz'""8 > 0, §y!"8 > (). Conversely, aggressive rhetoric,
zero-sum framing, or emphasis on exploitation risk can increase = or y, pushing the game toward conflict.
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10.4 De-escalation via Linguistic Nudging
Linguistic nudging can be used to de-escalate strategic interaction by transitioning the perceived game type
toward coordination-friendly regions.
Prisoner’s Dilemma — Stag Hunt. This transition requires 6z'"¢ < 0, reframing defection as illegiti-
mate or short-sighted:

“Defection is not clever—it undermines the system we all rely on.”

This preserves fear of miscoordination (y < 0) while eliminating dominant defection.

Chicken — Stag Hunt. Here the goal is to reduce fear (6y''"8 < 0):
“Neither side benefits from escalation; mutual restraint is the stable outcome.”

This moves the game away from brinkmanship toward coordination.

Stag Hunt — Harmony. Further reframing cooperation as both safe and dominant (lowering both 2 and
y) removes strategic tension entirely:

“This is simply how things are done; cooperation is the default.”

10.5 Escalation and Adversarial Linguistic Nudging

Linguistic nudging can also be used adversarially to escalate conflict or undermine coordination.

Stag Hunt — Prisoner’s Dilemma. By increasing perceived temptation (dz'"& > 0):
“Only fools cooperate; smart players take advantage while they can.”

This destroys the cooperative equilibrium.

Stag Hunt — Chicken. By increasing perceived fear (dy'"& > 0):
“If you hesitate, the other side will crush you.”

This transforms coordination into brinkmanship.

Chicken — Prisoner’s Dilemma. Further lowering the perceived sucker payoff via humiliation or stigma:
“Backing down is weakness.”

This makes mutual defection the dominant outcome.

10.6 Geometry of Linguistic Nudging
Geometrically, linguistic nudging induces a subjective displacement in payoff space:
(x,y) = (2,y) + (0a™8, 6y"%),

even when objective payoffs are unchanged. Because indifference boundaries (z = 0, y = 0) are low-
codimension, small linguistic shifts can trigger discrete changes in best-response structure.
Notably:

e Linguistic nudges often operate anisotropically, strongly affecting either x (moral framing) or y (fear
framing).

e Linguistic nudges are typically low-cost and fast, making them ideal tools for both rapid de-escalation
and rapid undermining.

19



10.7 Stochastic Linguistic Nudging

Language also induces uncertainty rather than deterministic shifts. Ambiguous statements, rumors, or
inconsistent messaging introduce variance in perceived payoffs:

mi(8) = ui(s) + ¢i(s; F, &),

where ¢ is a random interpretive variable. Even if E[¢;] = 0, increased variance can shift equilibrium selection
(e.g. from payoff-dominant to risk-dominant equilibria), especially in Stag Hunt—type games.

10.8 Interpretation

Linguistic nudging reveals that payoff engineering need not be material to be effective. Language acts as a
low-energy control input on the geometry of incentives, capable of moving a strategic system across phase
boundaries with minimal overt intervention.

From this perspective, discourse is not merely descriptive but structural: it reshapes the game being
played. De-escalation and escalation are therefore not matters of tone alone, but of precise directional
movement in payoff space.

11 Market Structure Engineering: Escalation and De-escalation

11.1 From Payoffs to Market Structure

In many economic and strategic environments, payoffs are not primitives but emerge endogenously from
market structure: rules of interaction, matching mechanisms, pricing conventions, timing, transparency, and
entry/exit conditions. We therefore define market structure engineering as the deliberate modification of
institutional or microstructural features of a market so as to reshape the induced payoff matrix of agents.
In the language developed earlier, market structure engineering is a higher-level form of payoff engineering:

ui(s) = ui(s | ./\/l),
where M denotes the market structure. A structural intervention
M~ M

induces a payoff perturbation R
ui(- [ M) = ui(- [ M),
which may be minimal in implementation yet large in strategic effect.

Market structure engineering differs from direct payoff engineering in that it acts indirectly, often ap-
pearing neutral or technical, while systematically shifting incentives.

11.2 Structural Levers and Induced Payoff Parameters

In symmetric 2 x 2 interactions, market structure affects the canonical payoff parameters (T, R, P, S) through
several recurring channels:

e Price formation rules (auction format, tick size, priority),

e Matching and access (bilateral vs. centralized, anonymity),

e Timing and repetition (one-shot vs. repeated, latency),

e Transparency (pre-trade/post-trade disclosure),

e Exit options and outside alternatives.

Each lever shifts perceived temptation (z = T — R) and fear (y = S — P), thereby relocating the induced

game in payoff space.
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11.3 De-escalatory Market Structure Engineering
De-escalation aims to move markets away from conflictual or fragile regimes (Prisoner’s Dilemma, Chicken)
toward coordination or harmony.
Prisoner’s Dilemma — Stag Hunt. This transition requires reducing unilateral advantage (x = T — R).
Structural mechanisms include:

e centralized clearing that equalizes execution quality,

e symmetric access to information,

e delayed settlement that exposes defectors to reciprocal response.

These reduce the payoff of unilateral exploitation while preserving coordination risk.

Chicken — Stag Hunt. Here the goal is to reduce downside fear (y = S — P). Examples include:
e circuit breakers and volatility interruptions,
e price collars or guaranteed minimum execution,
e mutualized loss-sharing mechanisms.

These interventions eliminate catastrophic outcomes, converting brinkmanship into coordination.

Stag Hunt — Harmony. Further structural stabilization (e.g. long-term contracts, automatic rollover,
shared infrastructure) can eliminate miscoordination risk entirely, making cooperation dominant.
11.4 Escalatory Market Structure Engineering
Escalatory engineering deliberately pushes markets toward more aggressive or unstable strategic regimes,
often under the guise of “competition enhancement” or “efficiency.”
Stag Hunt — Prisoner’s Dilemma. This transition increases temptation (z > 0) by rewarding unilateral
speed or aggression:

e latency advantages and speed races,

e winner-takes-all pricing rules,

e asymmetric information release.

Coordination equilibria collapse into dominant defection.

Stag Hunt — Chicken. This transition increases fear (y > 0) by amplifying downside asymmetry:
e removal of safety nets,
e mark-to-market liquidation triggers,
e procyclical margin requirements.

The market becomes one of brinkmanship, where backing down is costly.

Chicken — Prisoner’s Dilemma. Further escalation removes even the incentive to avoid catastrophe:
e fixed penalties for withdrawal,
e reputational stigmatization of de-escalation,

e irreversible commitment mechanisms.
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11.5 Geometry of Structural Interventions

In payoff-space terms, market structure engineering induces a displacement
(z,y) = (z,y) + (62, 0y™),

where (52, 5y™M) are typically:

e directional (favoring either temptation or fear),

o persistent (embedded in rules),

e harder to reverse than linguistic nudges.

Because market structures are slow-moving and path-dependent, even small shifts that cross indifference
boundaries can lock systems into new strategic regimes for extended periods.
11.6 Layering and Interaction with Other Nudges
Market structure engineering compounds with other forms of nudging;:

e Material payoffs: taxes, fees, subsidies act faster but are reversible.

e Linguistic nudging: shapes interpretation of structural changes.

e Adversarial nudging: exploits structural fragility for undermining.

In particular, structural escalation often relies on linguistic justification (“liquidity provision”, “price
discovery”) to mask its incentive effects.

11.7 Design Principle

Market structure engineering is the slow, high-leverage end of payoff engineering. Because it reshapes the
feasible set of outcomes rather than individual rewards, it is especially powerful for both de-escalation
(stability, cooperation) and escalation (competition, fragility).

From the geometric perspective developed here, market design is best understood as selecting a region of
payoff space and then hard-coding the market so that ordinary agent behavior remains trapped within that
region.

12 N-Player Extensions: Prisoner’s Dilemma, Stag Hunt, Chicken,
and Harmony

This section generalizes the canonical 2 x 2 games to N players, emphasizing how incentive geometry,
threshold effects, and equilibrium multiplicity scale with population size. The unifying theme is that strategic
structure is governed by how individual best responses depend on the number (or fraction) of others taking
a given action.

12.1 General N-Player Binary-Action Framework

Let N > 2 players choose actions a; € {C,D}. Let k € {0,1,..., N — 1} denote the number of other players
who cooperate.

Define payoffs by two sequences:
u(C; k), u(D; k),

interpreted as the payoff to a player who cooperates or defects, respectively, when k others cooperate.
Define the (cooperate-minus-defect) incentive gap:

A(k) :=u(C; k) —u(D; k), k=0,...,N—1. (9)
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A player’s best response is:
Cooperate iff A(k) > 0, Defect iff A(k) <0.

This representation makes clear that the strategic type of the game is encoded in the sign pattern and
monotonicity of A(k).

12.2 N-Player Prisoner’s Dilemma

Definition. An N-player Prisoner’s Dilemma (PD) is characterized by strict dominance of defection:
A(k) <0 forallk=0,...,N—1. (10)
Equilibria.
e Pure strategies: The unique Nash equilibrium is all defect (D, ..., D).

e Mixed strategies: No non-degenerate mixed equilibria exist; defection is strictly dominant.

Interpretation. The defining feature is state-independent incentives: the best response does not depend
on how many others cooperate. As in the two-player case, PD exhibits incentive misalignment rather than
coordination failure.

12.3 N-Player Stag Hunt and Threshold Effects
Definition. An N-player Stag Hunt (SH) relaxes dominance by allowing incentives to flip with k:

A(0)<0,  A(N-=1)>0, (11)

often with A(k) increasing in k.
This implies the existence of a (possibly non-integer) threshold &* such that:

A(k) <0for k< k*,  A(k) >0 for k > k*.

Pure-strategy equilibria. A profile with exactly m cooperators is a Nash equilibrium iff:
A(m—1)>0 and A(m) <0, (12)

with the boundary conventions m = 0 and m = N.
In the generic monotone case, this yields:

o All defect (D,...,D),
e All cooperate (C,...,C),
and no interior pure equilibria.
Mixed equilibrium. There is typically a symmetric mixed equilibrium p* € (0, 1) satisfying:
EAK)] =0, K ~Bin(N —1,p"),

which acts as an unstable separator between the basins of attraction of the two pure equilibria.

Interpretation. The N-player Stag Hunt formalizes coordination with risk: cooperation is efficient but
requires sufficiently many others to cooperate. Threshold effects and strategic complementarities are central.
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12.4 N-Player Chicken (Anti-Coordination)

Definition. An N-player Chicken game (also called Hawk-Dove) is characterized by incentives that favor
opposing the majority:
A(0) > 0, A(N -1) <0, (13)

often with A(k) decreasing in k.
Thus, cooperation is attractive when few others cooperate, but unattractive when many do.

Equilibria.

e Pure strategies: Typically multiple asymmetric pure equilibria with intermediate numbers of coop-
erators, depending on where A(k) crosses zero.

e Mixed strategies: Symmetric mixed equilibria are common and often stable, reflecting persistent
strategic uncertainty.

Interpretation. Chicken generalizes brinkmanship to many players: each prefers to be among the few
who persist while others yield, but mutual persistence is catastrophic. Unlike Stag Hunt, incentives are
substitutes, not complements.

12.5 N-Player Harmony

Definition. Harmony games are characterized by dominance of cooperation:
A(k)>0 forallk=0,...,N—1. (14)
Equilibria.
e Pure strategies: The unique Nash equilibrium is all cooperate (C,...,C).

e Mixed strategies: Only the degenerate mixed equilibrium placing probability one on cooperation.

Interpretation. Harmony represents aligned incentives: individual and collective interests coincide, and
no coordination or enforcement problem exists.

12.6 Comparative Geometry Across N Players
The four N-player game types correspond to distinct qualitative shapes of A(k):

Game type Sign pattern of A(k) Strategic issue
Prisoner’s Dilemma A(k) <0 for all & Incentive misalignment

Stag Hunt A(0) <0, A(N—-1)>0 Coordination / thresholds
Chicken A(0) >0, A(N —1) <0 Anti-coordination / brinkmanship
Harmony A(k) > 0 for all k None (aligned incentives)

Geometrically, moving from PD to SH, CH, or Harmony corresponds to deforming A(k) so that it crosses
zero for some k. As in the two-player case, these crossings define low-codimension boundaries in payoff space,
explaining why small structural, stochastic, or linguistic interventions can induce large qualitative changes
in equilibrium behavior.
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12.7 Connection to Threshold Public Goods

Many N-player games arise from public-good technologies. Let:
u(C;k) =B(k+1) —¢, u(D; k) = B(k),

where B(-) is a benefit function and ¢ > 0 is a cost.
Then:
A(k)=B(k+1)—B(k) —c.
If Blk+1

B(k) < c for all k: PD.

increases with k& and crosses ¢: SH with thresholds.

o If Blk+1 B(k) decreases with k: Chicken-like incentives.

(k+1) — B(k)
If B(k+1) - B(k)
(k+1) — B(k)
o If B(k+1) — B(k) > c for all k: Harmony.

This representation makes explicit how technological or institutional changes to B(-) implement payoff
engineering at scale.

12.8 Summary

The N-player extension reveals that the familiar two-player games are not isolated curiosities but limiting
cases of broader incentive geometries. Dominance, coordination, anti-coordination, and harmony correspond
to distinct global shapes of the incentive gap A(k). Threshold effects and equilibrium multiplicity arise
precisely when A(k) changes sign, providing a clean bridge between game theory, public goods, and the
broader theory of payoff engineering developed in this paper.

13 Noise, Risk, and Phase Transitions

This section analyzes how stochastic perturbations to payoffs interact with risk preferences and strategic
structure. The central question is when “adding noise” can induce a qualitative transition between game
types—most importantly from Prisoner’s Dilemma (PD) to Stag Hunt (SH). The key conclusion is negative in
general and precise in its exceptions: variance alone does not change strategic type, but variance interacting
with risk aversion, state dependence, or nonlinear payoff structure can generate genuine phase transitions.

The analysis here synthesizes and formalizes the results developed in detail in the accompanying technical
document :contentReference|oaicite:0]index=0.

13.1 Baseline: Deterministic Incentive Gap

Recall the N-player binary-action framework. Let k& be the number of cooperating others and define the

deterministic incentive gap
d(k) :=u(D; k) — u(C; k).

e N-player PD: d(k) > 0 for all k (defection strictly dominates).
e N-player SH: d(0) > 0 and d(N — 1) < 0 (incentives flip).

A transition from PD to SH requires that the effective incentive gap change sign for some k. The question
is whether stochastic perturbations can achieve this.
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13.2 Additive Noise with Risk-Neutral Players: No Transition
Suppose realized payoffs are
u(C; k) = u(C; k) + ec, u(D; k) = u(D; k) +ep,

with Ele¢] = E[ep] = 0 and finite variance.
If players are risk-neutral and choose actions before noise is realized, they compare expected payoffs:

Ela(D; k) — a(C; k)] = d(k).
Hence:

Zero-mean additive noise, regardless of variance, does not change best responses or Nash equilibria
under risk neutrality.

In particular, an N-player PD remains a PD for all noise variances; there is no “critical variance” that
induces a stag-hunt structure.
This conclusion continues to hold if:

e noise is common or correlated across players,
e noise is realized after actions are chosen,

e players maximize expected payoff.

13.3 Private Payoff Shocks Observed Before Choice
Now suppose each player observes idiosyncratic shocks (e¢,ep) before choosing. A player cooperates iff
ec —ep > d(k).
This produces probabilistic (smooth) best responses and a Bayesian equilibrium of cutoff form. However:
e For each fixed k, defection remains optimal for a nonempty set of types whenever d(k) > 0.

e There is no k at which cooperation becomes a dominant best response for all types unless d(k) < 0
deterministically.

Thus:

Private payoff noise creates smooth responses but does not convert a PD into a SH at the level
of complete-information Nash equilibria.

Indeed, in the global-games tradition, small private noise often eliminates multiplicity rather than creating
it.
13.4 Risk Aversion and Certainty Equivalents
Noise can matter once players are risk-averse. Let payoffs be normally distributed conditional on action:

ta(k) = pa(k) +1a(k),  na(k) ~N(0,va(k)), a€{C, D},
and let utility be CARA with coefficient p > 0:
U(z) = —e™ P~
Under CARA-Normal assumptions, the certainty equivalent is

CEu(k) = palk) = Sva(k).

Cooperation is preferred iff

or equivalently



13.5 Why Variance Alone Is Still Insufficient

If vo (k) = vp(k) for all k, the variance term cancels in (15), and the deterministic incentive gap d(k) fully
determines behavior. Thus:

Risk aversion without action-dependent variance does not change strategic type.

To induce a PD—SH transition, variance must not only exist, but differ across actions.

13.6 State-Dependent Variance and Phase Transitions

A genuine phase transition occurs when the variance gap Av(k) depends on k.

PD — SH via risk. To obtain stag-hunt incentives, we require:
d(0) > £Av(0) (defection optimal when few cooperate),
{d(N —1) < £Av(N —1) (cooperation optimal when many cooperate).
This can hold even if d(k) > 0 for all k& (a deterministic PD), provided:
e defection becomes sufficiently riskier than cooperation at high k, or

e cooperation becomes sufficiently less risky at high k.

Linear variance gap. A particularly transparent case is
Av(k) = a + Bk, 8> 0.

Then the effective incentive gap becomes

den(k) = d(k) — £ (a + BE),

which is decreasing in k even if d(k) is constant. This creates threshold behavior and multiple equilibria
exactly of the stag-hunt type.

13.7 Public-Good Interpretation
Many N-player dilemmas arise from public-good technologies:

SO

d(k) =c— (B(k+1) — B(k)).
e If B is concave, d(k) increases with k (anti-coordination pressure).
e If B is convex or S-shaped, d(k) decreases with k (coordination).
Risk interacts with technology:
e With constant Awv, SH-like multiplicity requires increasing returns in B.

e With increasing Av(k), SH-like multiplicity can be manufactured even if B alone would not produce
it.

Thus, risk and noise act as payoff engineering knobs that reshape the effective incentive geometry.
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13.8 Phase Transitions and Geometry
From the geometric perspective developed earlier:
e Deterministic PD corresponds to staying strictly inside the PD region of payoff space.
e Risk-adjusted incentives move the system along a direction determined by Av(k) and p.

e A PD—SH transition occurs precisely when this movement crosses an indifference boundary for some
k.

Because these boundaries are low-codimension, small parameter changes in variance structure or risk

aversion can produce discontinuous changes in equilibrium structure.

13.9 Summary

e Variance alone does not change strategic type under risk neutrality.

e Private payoff noise smooths behavior but does not create coordination equilibria.

e Risk aversion makes variance matter through certainty equivalents.

e Action- and state-dependent variance can induce genuine PD—SH phase transitions.

e These transitions admit a clean geometric interpretation as boundary crossings in payoff space.

Noise matters not as randomness per se, but as a structural deformation of incentives. When combined
with risk preferences and strategic complementarities, it becomes a powerful—and subtle—tool of payoff
engineering.

14 Self-Organized Criticality and Strategic Phase Boundaries

14.1 Background: Self-Organized Criticality

Self-organized criticality (SOC) is a concept originating in statistical physics, introduced to explain why
many complex systems naturally evolve toward critical points at which small perturbations can generate
cascades of all scales. The canonical example is the sandpile: grains are added slowly, local thresholds
trigger rapid avalanches, and dissipation prevents indefinite accumulation. Without external fine-tuning, the
system hovers near a critical boundary separating stability from large-scale reorganization.

Key features of SOC are:

e Slow driving: external inputs increase system stress gradually.

e Threshold dynamics: local state variables trigger discontinuous events once a critical level is ex-
ceeded.

e Fast relaxation: cascades propagate rapidly relative to the driving timescale.
¢ Dissipation: avalanches reset local stress, preventing runaway growth.

The hallmark empirical signature is a heavy-tailed (often approximately power-law) distribution of event
sizes, reflecting the absence of a characteristic scale.
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14.2 Why Strategic Games Can Exhibit SOC

The payoff-engineering framework developed in this paper reveals that many strategic environments possess
precisely the ingredients required for SOC once they are near a strategic phase boundary (most notably the
Prisoner’s Dilemma—Stag Hunt boundary).

Recall that in the N-player setting, incentives are summarized by the effective gap

g(k) := A(k) or (under risk adjustment) g(k) := pc(k) — up(k) — g(uc(k) —vp(k)).

A Stag Hunt-type regime is characterized by:
9(0) <0,  g(N-1)>0,

so that cooperation becomes a best response once enough others cooperate. This introduces strategic com-
plementarity: one player’s switch from defection to cooperation increases the incentive for others to do the
same.

Near the PD«++SH boundary, g(k) is close to zero for a range of k, making agents nearly indifferent. In
this region:

e small payoff perturbations can flip best responses,
e individual strategy changes feed back positively into others’ incentives,
e equilibrium basins are separated by unstable boundaries.

These properties map directly onto SOC dynamics.

14.3 Sandpile Mapping: Mean-Field Version

We first describe a mean-field (fully connected) mapping, where each agent interacts with the aggregate
behavior of the population.

State variable (height). Associate to each agent i a latent scalar h;, measuring how favorable cooperation
is relative to defection (trust, norm pressure, perceived safety, risk-adjusted payoff margin).

Threshold. Each agent has a threshold 6; such that:
agent i cooperates <= h; + ®(p) > 6;,

where p is the fraction of cooperators and ®(p) is an increasing “cooperation field” induced by others’ actions.
In the game-theoretic model, ®(p) is a monotone transform of the expected incentive G(p) = E[g(K)].

Slow drive. At each slow timestep, a small increment is applied:

to a randomly chosen agent. This represents gradual changes such as norm-building, incremental enforce-
ment, technological improvements, or slow shifts in risk structure.

Toppling (strategy switch). If h; +®(p) > 6; and agent ¢ is defecting, she switches to cooperation. This
increases p by 1/N, thereby increasing ®(p) for everyone else.

Dissipation. After a switch, some resource is reduced:
hi — hl — &,

or more generally, h; decays slowly over time. This captures enforcement fatigue, cost realization, or erosion
of trust.
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14.4 Criticality Condition (Mean Field)

In SOC, criticality corresponds to a branching ratio near one: on average, one toppling causes one further
toppling.

Let m; := 0; — (h; + ®(p)) be the margin to threshold, and let f,,(0) denote the density of agents near
indifference. A single flip increases p by 1/N, changing the field by approximately ®’(p)/N. The expected
number of additional flips triggered is therefore:

Eloffspring] ~ fn(0) 2’ (p).

The SOC condition is:
fm(0) ®'(p) ~ 1.

Near the PD«++SH boundary, ®'(p) is large because incentives are highly sensitive to p (strong strategic
complementarity). If slow drive and dissipation coexist, the system can self-tune so that this condition holds
approximately over long periods.

14.5 Network (Local-Interaction) Sandpile Model

The same logic extends naturally to networks.

Local incentives. Let k; denote the number of cooperating neighbors of agent i. Define a local gain
function g;(k;), increasing in k; in the SH-like regime. Agent i cooperates iff:

ki > K4,

where k; is a (possibly heterogeneous) threshold.

Local toppling. When an agent switches to cooperation, each neighbor’s k; increases by one, potentially
pushing them over threshold. This is exactly the sandpile “grain redistribution” rule.

Branching condition. If a random neighbor is one short of threshold with probability ¢, and the network
has mean excess degree
(d?) — (d)

(d)
then the expected number of secondary flips is approximately:
(@) — (d)
(d)

Criticality again corresponds to this quantity being near one. Degree heterogeneity (large (d?)) makes
SOC more likely, explaining why cascades are amplified by hubs and long-range connections.

E[offspring] ~ ¢ -

14.6 Why Pure Prisoner’s Dilemma Does Not SOC

A strict PD has g(k) < 0 for all k, so one agent’s cooperation does not increase others’ incentives to cooperate.
There is no toppling rule: flips do not propagate. Consequently, PD lacks the complementarity required for
SOC.

SOC becomes possible only after payoff engineering (via institutions, risk structure, technology, or norms)
has moved the system into SH-like territory.
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14.7 Implications
e Strategic systems near PD<«+SH boundaries are intrinsically fragile.
e Long periods of apparent stability can be punctuated by abrupt, system-wide regime shifts.
e Small nudges or shocks can have disproportionate effects when the system is near criticality.

e Attempts at smooth comparative statics are unreliable in SOC regimes.

These observations provide a unifying explanation for sudden norm changes, market crashes, coordination
booms, and institutional collapses observed in practice.

14.8 Summary

Self-organized criticality provides a dynamic complement to the static payoff-geometry framework. Strategic
complementarities create threshold dynamics; slow payoff drift and dissipation drive the system toward
indifference surfaces; and cascades emerge naturally without fine-tuning. The PD-SH phase boundary thus
plays the role of a critical manifold, around which strategic systems may self-organize and remain perpetually
vulnerable to both constructive and adversarial interventions.

For detailed derivations, parameterizations, and extensions underlying this section, see the accompanying
technical analysis.

15 Design Implications and Defensive Engineering

This section translates the preceding theoretical framework into practical prescriptions. The unifying objec-
tive is to design strategic systems that are (i) resilient to adversarial nudging, (ii) robust to noise and shocks,
and (iii) capable of sustaining cooperative equilibria without relying on continual fine-tuning.

We frame these prescriptions in the geometric language developed earlier: defensive engineering aims to
increase the distance from critical indifference boundaries and to reduce the amplification of local perturba-
tions near those boundaries.

15.1 Design Objectives

Given a strategic environment with payoff representation u (or normalized parameters (z,y) in the 2 x 2
case), a designer may pursue one or more of the following objectives:

1. Robust cooperation: ensure that cooperation is a Nash equilibrium with a large basin of attraction.
2. Shock resistance: limit the propagation of local deviations into global cascades.

3. Manipulation resistance: reduce susceptibility to adversarial linguistic, stochastic, or structural
nudges.

4. Predictability: avoid regimes in which small parameter changes induce large qualitative shifts.

These objectives are naturally expressed as geometric constraints on payoff space and its dynamics.

15.2 Increasing Robustness Radius

Recall the robustness radius

p([u]) == dist([u], 0C),
where JC denotes the boundary of the desired game class (e.g. the SH-PD boundary).

31



Prescription 1: Push away from boundaries. Defensive design should aim to:
e reduce temptation gaps (1" — R) decisively, not marginally;
e reduce fear gaps (S — P) with clear safety margins;
e avoid designs that “just barely” induce coordination.
Systems tuned to be merely cooperative are inherently fragile; systems designed to be unambiguously coop-

erative are robust.

15.3 Reducing Strategic Complementarity Near Indifference
SOC analysis shows that fragility arises when:
e agents are nearly indifferent,

e incentives depend steeply on others’ actions.

Prescription 2: Flatten incentive gradients. Design mechanisms that reduce ®'(p), the sensitivity of
incentives to aggregate behavior:

e cap marginal rewards from unilateral exploitation;
e smooth payoff functions to avoid sharp thresholds;
e limit feedback loops that amplify small behavioral changes.

This reduces cascade likelihood even if the system remains near a phase boundary.

15.4 Managing Noise and Risk

The theory shows that risk and variance can induce coordination or instability depending on their structure.

Prescription 3: Control variance asymmetries.
e Avoid action-dependent variance that makes cooperation fragile.
e If risk is unavoidable, ensure that cooperation is less risky than defection across states.

e Prevent state-dependent variance from increasing sharply with aggregate behavior unless deliberately
inducing coordination.

Uncontrolled variance asymmetries are a common vector for adversarial nudging.

15.5 Linguistic and Informational Hygiene

Because linguistic nudging operates cheaply and rapidly, defensive measures are essential.

Prescription 4: Stabilize framing.
e Use consistent language that reinforces cooperative norms.
e Avoid rhetoric that increases perceived temptation or fear.

e Decouple moral or identity language from short-term outcomes.
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Prescription 5: Detect adversarial reframing. Monitor for systematic shifts in discourse that:
e stigmatize cooperation,
e glorify unilateral exploitation,
e exaggerate downside risks asymmetrically.

Such shifts often precede structural undermining.

15.6 Market and Institutional Design

Structural rules are slow-moving but high-impact.

Prescription 6: Prefer stabilizing market structures.
e favor symmetric access and symmetric penalties;
e embed safety nets that eliminate catastrophic outcomes;

e use repetition and long horizons to support cooperation.

Prescription 7: Avoid engineered brinkmanship. Be wary of structures that:
e reward speed races,
e penalize de-escalation,
e hard-code winner-takes-all outcomes.

These push systems toward Chicken or PD regimes.

15.7 Population-Level Design

In N-player environments, fragility often increases with scale.

Prescription 8: Localize interactions.
e limit the radius over which one agent’s action affects others;
e modularize systems to prevent global cascades;
e introduce buffers between clusters.

This reduces effective branching ratios and suppresses SOC-like avalanches.

15.8 Dynamic Monitoring and Adaptive Defense

Static robustness is insufficient in evolving environments.

Prescription 9: Monitor proximity to phase boundaries. Track indicators such as:
e increasing variance of behavior,
e slowing response times,
e heightened sensitivity to small shocks.

These are early-warning signals of criticality.
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Prescription 10: Use counter-nudging sparingly. When intervention is required:
e apply small, directional nudges that increase robustness radius;
e avoid oscillatory overcorrection that induces new fragilities;

e prefer structural fixes over repeated micro-interventions.

15.9 Ethical and Governance Considerations

Because payoff engineering can be used adversarially, defensive design must also address governance:
e transparency about incentive structures,
e accountability for structural changes,
e separation between rule designers and strategic beneficiaries.

Unchecked payoff engineering risks turning institutions into instruments of hidden coercion rather than
coordination.

15.10 Summary

Defensive engineering reframes institutional and market design as a problem of geometric robustness. The
central prescriptions are simple but demanding: stay away from strategic phase boundaries, flatten dangerous
feedback loops, control variance asymmetries, and resist cheap manipulations of perception. Systems that
ignore these principles may appear efficient in calm periods, but they are structurally primed for sudden
breakdowns when subjected to noise, shocks, or adversarial intervention.

16 Related Work

The framework developed in this paper draws on several mature literatures while reorganizing them around
a geometric view of incentives. This section situates the contribution relative to prior work and clarifies
points of overlap and departure.

16.1 Classical Game Theory

The foundational analysis of strategic interaction originates with von Neumann and Morgenstern and the
equilibrium concept introduced by Nash [18, 12]. The classification of 2 x 2 games and the distinction between
dominance, coordination, and anti-coordination have long been standard [15, 4, 14].

What is new here is not the existence of these games, but their treatment as regions in payoff space
separated by indifference manifolds. While prior work implicitly relies on payoff orderings, it rarely makes
the geometry explicit or treats boundary crossing as a design problem.

16.2 Mechanism Design and Implementation

Mechanism design and implementation theory study how institutions can be constructed so that equilibrium
outcomes coincide with desired objectives [7, 9, 11]. These frameworks typically assume the designer can
specify the entire game, often under informational constraints.

In contrast, payoff engineering focuses on minimal and often indirect interventions applied to existing
games. The objective is not to implement a social choice correspondence, but to alter the strategic regime
itself (e.g. from Prisoner’s Dilemma to Stag Hunt). This places payoff engineering closer to control theory
than to classical mechanism design.
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16.3 Behavioral Economics and Nudging

The notion of nudging originates in behavioral economics, where small changes in choice architecture influence
behavior without restricting options [17]. Subsequent work emphasizes framing effects, defaults, and bounded
rationality.

The present framework differs in two respects. First, nudges are formalized as payoff perturbations—deterministic
or stochastic—rather than psychological anomalies. Second, nudging is treated symmetrically: the same
tools can improve coordination or undermine it. The adversarial use of nudging is largely absent from the
behavioral literature.

16.4 Information Design and Persuasion

Bayesian persuasion and information design study how signals shape beliefs and actions [8, 2]. These models
focus on belief manipulation under common priors and rational updating.

Linguistic nudging, as developed here, is complementary but distinct. Rather than manipulating posterior
beliefs about states, language reshapes perceived payoffs and risk, effectively altering the incentive geometry
itself. The resulting strategic transitions may occur even without informational asymmetries.

16.5 Evolutionary Game Theory and Learning

Evolutionary game theory and learning dynamics examine how strategies evolve under replication, muta-
tion, or reinforcement [16, 19]. These approaches naturally emphasize stability, basin size, and equilibrium
selection.

Our analysis intersects with this literature in its attention to basins of attraction and thresholds. However,
evolutionary models typically take the game as fixed, whereas payoff engineering treats the game as an object
of manipulation. The geometric perspective clarifies why small payoff changes can lead to large evolutionary
effects.

16.6 Global Games and Noise

The global games literature studies how small private noise resolves equilibrium multiplicity [3, 10]. Noise
often selects a unique equilibrium rather than creating new ones.

This paper’s analysis of noise and risk complements these results by showing when noise cannot change
strategic type (risk neutrality) and when it can (risk aversion with state-dependent variance). The emphasis
is on phase transitions rather than equilibrium refinement.

16.7 Complex Systems and Self-Organized Criticality

Self-organized criticality was introduced to explain scale-free cascades in physical systems [1]. It has since
been applied to economics, finance, and social dynamics [5].

The contribution here is to connect SOC explicitly to incentive geometry. Strategic complementarities
near payoff indifference boundaries generate threshold dynamics analogous to sandpile models. The PD-Stag
Hunt boundary plays the role of a critical manifold, a connection that has not been systematically explored
in the game-theoretic literature.

16.8 Market Microstructure and Institutional Design

Market microstructure studies how trading rules and institutional features affect behavior and outcomes
[13, 6]. Regulatory and institutional design similarly shapes incentives over long horizons.

The present work reframes these contributions as instances of market structure engineering: persistent
modifications to payoff geometry that can stabilize or destabilize strategic interaction. This geometric lens
helps explain why seemingly technical design choices can have outsized strategic consequences.
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16.9 Summary

Existing literatures provide many of the individual tools used in this paper, but typically in isolation. By
unifying games, nudges, language, markets, noise, and cascades within a single geometric framework, this
work shifts the emphasis from outcome optimization to regime engineering. The novelty lies less in any single
technical result than in the synthesis: incentives are not merely parameters, but coordinates in a structured
space whose geometry governs strategic behavior.

17 Conclusion: Incentive Geometry as a Unifying Lens

This paper has advanced a unifying perspective on strategic interaction: incentive geometry. Across games,
institutions, language, markets, and collective dynamics, qualitative strategic behavior is governed by the
position of a system in payoff space and by its distance to low-codimension indifference boundaries that
separate distinct incentive regimes.

What appear, on the surface, as disparate phenomena—Prisoner’s Dilemmas, coordination failures, be-
havioral nudges, linguistic framing, market microstructure, cascades, and crises—are shown to be manifes-
tations of a common geometric structure.

17.1 Unification Across Domains

Games. Canonical game types (Prisoner’s Dilemma, Stag Hunt, Chicken, Harmony) correspond to open
regions in payoff space with invariant best-response structure. Transitions between them occur by crossing
indifference surfaces such as T'= R or S = P, making strategic behavior piecewise-stable and discontinuous.

Nudges. Behavioral nudges, deterministic or stochastic, are reinterpreted as minimal payoff perturba-
tions—small vectors in payoff space designed to cross or avoid these boundaries. Their effectiveness derives
not from magnitude, but from direction and proximity to strategic phase boundaries.

Language. Linguistic framing operates as low-energy payoff engineering, shifting perceived temptation and
fear without altering formal rules. Language thus becomes a control input in incentive geometry, capable of
rapid de-escalation or escalation when systems are near indifference.

Markets and Institutions. Market structure and institutional rules embed incentives persistently. They
hard-code regions of payoff space, often unintentionally pushing systems toward brinkmanship or fragility.
Structural design choices therefore have long-run strategic consequences disproportionate to their apparent
technicality.

Cascades and Criticality. Near strategic boundaries, complementarities and thresholds generate self-
organized criticality. Small shocks produce cascades, equilibrium selection becomes unstable, and smooth
comparative statics fail. The PD-Stag Hunt boundary emerges as a critical manifold around which many
real systems self-organize.

Together, these perspectives collapse a wide array of strategic phenomena into a single geometric frame-
work.

17.2 Conceptual Contributions
The paper contributes:
e a geometric taxonomy of strategic environments,
e a formal theory of nudging as payoff engineering,
e a symmetric treatment of benevolent and adversarial interventions,

e a metric and topological notion of minimality and robustness,
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e a dynamic account linking payoff geometry to cascades and criticality.

Rather than optimizing outcomes, the framework focuses on changing the nature of the game itself —often
with minimal intervention.
17.3 Open Problems
Several directions remain open:

e Endogenous geometry: how payoff geometry evolves when agents strategically redesign institutions
or narratives.

e Higher-dimensional games: systematic classification of game regions beyond binary actions.

e Learning dynamics: how incentive geometry interacts with reinforcement learning, belief updating,
and bounded rationality.

e Adversarial equilibrium: formal characterization of optimal adversarial strategies under payoft-
engineering budgets.

These problems require integrating game theory, control theory, and complex systems analysis.

17.4 Empirical Directions
The framework suggests concrete empirical tests:
e identifying early-warning indicators of proximity to strategic phase boundaries,
e measuring robustness radii in institutional or market data,
e testing whether linguistic shifts precede structural breakdowns,
e mapping real-world incentive changes onto (z, y)-type parameter spaces.

Because the theory predicts discontinuities rather than smooth responses, empirical strategies must focus
on regime shifts, not marginal effects.

17.5 Ethical Considerations

Finally, incentive geometry highlights an ethical tension. The same tools that enable cooperation, stability,
and resilience can be used to manipulate, coerce, or undermine. Linguistic nudging, structural design, and
stochastic incentives are powerful precisely because they often operate below the threshold of explicit consent
or awareness.

Responsible use of payoff engineering therefore requires:

e transparency in institutional design,

e accountability for incentive manipulation,

e safeguards against adversarial exploitation,

e and clear separation between coordination and coercion.

Without such safeguards, incentive geometry risks becoming a technology of domination rather than a
tool for collective benefit.
17.6 Closing Remark

Incentives are not merely numbers in a payoff matrix; they form a geometry. Understanding that geome-
try—its boundaries, distances, and dynamics—offers a powerful lens for interpreting strategic behavior in
economics, politics, and society. It also places a responsibility on designers: when we reshape incentives, we
are not just adjusting outcomes, but redefining the game itself.
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